Exercise 31

Use algebra to find the point at which the line $f(x)=\frac{7}{4} x+\frac{457}{60}$ intersects the line $g(x)=\frac{4}{3} x+\frac{31}{5}$.

Solution

At the point of intersection, the two functions are equal.

$$
\begin{aligned}
f(x) & =g(x) \\
\frac{7}{4} x+\frac{457}{60} & =\frac{4}{3} x+\frac{31}{5}
\end{aligned}
$$

Solve for x.

$$
\begin{aligned}
\frac{7}{4} x-\frac{4}{3} x & =\frac{31}{5}-\frac{457}{60} \\
\frac{5}{12} x & =-\frac{17}{12} \\
x & =-\frac{17}{5}
\end{aligned}
$$

Now plug this value of x into either of the functions to get the corresponding y-value.

$$
f\left(-\frac{17}{5}\right)=\frac{7}{4}\left(-\frac{17}{5}\right)+\frac{457}{60}=\frac{5}{3}
$$

Therefore, the point of intersection is $\left(-\frac{17}{5}, \frac{5}{3}\right)$.

